Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Front Immunol ; 15: 1329820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590526

RESUMO

The immune system of Asian elephants (Elephas maximus) is poorly studied, compared to that of livestock, rodents or humans. The innate immune response has become a focus of interest in relation to Elephant endotheliotropic herpesviruses (EEHVs). EEHVs cause a fatal hemorrhagic disease (EEHV-HD) and are a significant threat to captive Asian elephant populations worldwide. Similar to other herpesvirus infections, nearly all animals become infected, but only some develop disease. As progression to EEHV-HD is often acute, a robust innate immune response is crucial to control EEHV infections. This is invariably true of the host in the first instance, but it can also potentially be modulated by intervention strategies. Here, two immunostimulant veterinary medicinal products, authorized for use in domestic species, were tested for their ability to induce innate anti-viral immune responses in Asian elephant blood cells. Sequence data were obtained for a range of previously unidentified Asian elephant immune genes, including C-X-C motif chemokine ligand 10 (CXCL10), interferon stimulated gene 15 (ISG15) and myxovirus GTPase 1 (Mx1), and were employed in the design of species-specific qPCR assays. These assays were subsequently used in analyses to determine fold changes in gene expression over a period of 24 hours. This study demonstrates that both immunostimulant medications are capable of inducing significant innate anti-viral immune responses which suggests that both could be beneficial in controlling EEHV infections in Asian elephants.


Assuntos
Elefantes , Infecções por Herpesviridae , Herpesviridae , Humanos , Animais , Ovinos , Elefantes/genética , DNA Bacteriano , Células Sanguíneas , Imunidade Inata , Plasmídeos , Imunização , Adjuvantes Imunológicos , Expressão Gênica
2.
Emerg Infect Dis ; 30(2): 396-398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270166

RESUMO

We report fatal West Nile virus (WNV) infection in a 7-year-old mare returning to the United Kingdom from Spain. Case timeline and clustering of virus sequence with recent WNV isolates suggest that transmission occurred in Andalusía, Spain. Our findings highlight the importance of vaccination for horses traveling to WNV-endemic regions.


Assuntos
Febre do Nilo Ocidental , Animais , Feminino , Análise por Conglomerados , Cavalos , Espanha/epidemiologia , Reino Unido/epidemiologia , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/veterinária
3.
Nat Commun ; 14(1): 6398, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880229

RESUMO

The sudden mortality of African elephants (Loxodonta africana) in Botswana and Zimbabwe in 2020 provoked considerable public interest and speculation. Poaching and malicious poisoning were excluded early on in the investigation. Other potential causes included environmental intoxication, infectious diseases, and increased habitat stress due to ongoing drought. Here we show evidence of the mortalities in Zimbabwe as fatal septicaemia associated with Bisgaard taxon 45, an unnamed close relative of Pasteurella multocida. We analyse elephant carcasses and environmental samples, and fail to find evidence of cyanobacterial or other intoxication. Post-mortem and histological findings suggest a bacterial septicaemia similar to haemorrhagic septicaemia caused by P. multocida. Biochemical tests and 16S rDNA analysis of six samples and genomic analysis of one sample confirm the presence of Bisgaard taxon 45. The genome sequence contains many of the canonical P. multocida virulence factors associated with a range of human and animal diseases, including the pmHAS gene for hyaluronidase associated with bovine haemorrhagic septicaemia. Our results demonstrate that Bisgaard taxon 45 is associated with a generalised, lethal infection and that African elephants are susceptible to opportunistically pathogenic Pasteurella species. This represents an important conservation concern for elephants in the largest remaining metapopulation of this endangered species.


Assuntos
Elefantes , Septicemia Hemorrágica , Pasteurella multocida , Humanos , Animais , Bovinos , Septicemia Hemorrágica/veterinária , Septicemia Hemorrágica/microbiologia , Pasteurella , Pasteurella multocida/genética , Ecossistema
4.
Viruses ; 15(1)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36680295

RESUMO

Equine viral arteritis is an infectious disease of equids caused by equine arteritis virus (EAV), an RNA virus of the family Arteriviridae. Dendritic cells (DC) are important modulators of the immune response with the ability to present antigen to naïve T cells and can be generated in vitro from monocytes (MoDC). DC are important targets for many viruses and this interaction is crucial for the establishment-or rather not-of an anti-viral immunity. Little is known of the effect EAV has on host immune cells, particularly DC. To study the interaction of eqDC with EAV in vitro, an optimized eqMoDC system was used, which was established in a previous study. MoDC were infected with strains of different genotypes and pathogenicity. Virus replication was determined through titration and qPCR. The effect of the virus on morphology, phenotype and function of cells was assessed using light microscopy, flow cytometry and in vitro assays. This study confirms that EAV replicates in monocytes and MoDC. The replication was most efficient in mature MoDC, but variable between strains. Only the virulent strain caused a significant down-regulation of certain proteins such as CD14 and CD163 on monocytes and of CD83 on mature MoDC. Functional studies conducted after infection showed that EAV inhibited the endocytic and phagocytic capacity of Mo and mature MoDC with minimal effect on immature MoDC. Infected MoDC showed a reduced ability to stimulate T cells. Ultimately, EAV replication resulted in an apoptosis-mediated cell death. Thus, EAV evades the host anti-viral immunity both by inhibition of antigen presentation early after infection and through killing infected DC during replication.


Assuntos
Equartevirus , Animais , Cavalos , Equartevirus/genética , Monócitos , Virulência , Células Dendríticas , Diferenciação Celular
5.
Viruses ; 14(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36146687

RESUMO

Using the commercially available PEPperCHIP® microarray platform, a peptide microarray was developed to identify immunodominant epitopes for the detection of antibodies against Equine arteritis virus (EAV). For this purpose, the whole EAV Bucyrus sequence was used to design a total of 1250 peptides that were synthesized and spotted onto a microarray slide. A panel of 28 serum samples representing a selection of EAV strains was tested using the microarray. Of the 1250 peptides, 97 peptides (7.76%) showed reactivity with the EAV-positive samples. No single peptide was detected by all the positive serum samples. Seven peptides repeatedly showed reactivity above the cut-off and were considered to have diagnostic potential. Five of these peptides were within the immunodominant GP5 protein and two were within the replicase polyprotein regions NSP2 and NSP10, located in ORF1. The diagnostic sensitivity of the seven peptides selected was low, ranging from 5% to 55%; however, the combined diagnostic sensitivity and specificity of the seven peptides was 90% and 100%, respectively. This data demonstrate that multiple peptide sequences would be required to design a comprehensive serological test to cover the diversity of the EAV strains and the individual immune responses of horses.


Assuntos
Equartevirus , Doenças dos Cavalos , Sequência de Aminoácidos , Animais , Cavalos , Epitopos Imunodominantes , Peptídeos , Poliproteínas
6.
Front Microbiol ; 13: 909396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836425

RESUMO

The last outbreak of classical swine fever (CSF) in the UK occurred in 2000. A total of 16 domestic pig holdings in the East Anglia region were confirmed as infected over a 3-month period. Obtaining viral genome sequences has since become easier and more cost-effective and has accordingly been applied to trace viral transmission events for a variety of viruses. The rate of genetic evolution varies for different viruses and is influenced by different transmission events, which will vary according to the epidemiology of an outbreak. To examine if genetic changes over the course of any future CSF outbreak would occur to supplement epidemiological investigations and help to track virus movements, the E2 gene and full genome of the virus present in archived tonsil samples from 14 of these infected premises were sequenced. Insufficient changes occurred in the full E2 gene to discriminate between the viruses from the different premises. In contrast, between 5 and 14 nucleotide changes were detected between the genome sequence of the virus from the presumed index case and the sequences from the other 13 infected premises. Phylogenetic analysis of these full CSFV genome sequences identified clusters of closely related viruses that allowed to corroborate some of the transmission pathways inferred by epidemiological investigations at the time. However, other sequences were more distinct and raised questions about the virus transmission routes previously implicated. We are thus confident that in future outbreaks, real-time monitoring of the outbreak via full genome sequencing will be beneficial.

7.
BMC Biol ; 20(1): 14, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027054

RESUMO

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , Suínos
8.
Transbound Emerg Dis ; 69(4): e153-e160, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34343411

RESUMO

Schmallenberg orthobunyavirus (SBV) was initially detected in 2011 in Germany from dairy cattle with fever and decreased milk yield. The virus infection is now established in many parts of the world with recurrent epidemics. SBV is transmitted through midges and transplacental. No direct virus transmission including via breeding has ever been demonstrated. In some bulls, however, the virus is detectable transiently, in low to minute quantities, in semen post-infection. While the infection is considered of low impact for the dairy industry, some SBV-free countries have adopted a zero-risk approach requiring bull semen batches to be tested for SBV RNA residues prior to import. This, in turn, obligates a protocol to enable sensitive detection of SBV RNA in semen samples for export purposes. Here, we describe how we established a now ISO/IEC 17025 accredited protocol that can effectively detect minute quantities of SBV RNA in semen and also its application to monitor bull semen during two outbreaks in the United Kingdom in 2012 and 2016. The data demonstrate that only a small number of bulls temporarily shed low amounts of SBV.


Assuntos
Criação de Animais Domésticos , Infecções por Bunyaviridae , Doenças dos Bovinos , Orthobunyavirus , Sêmen , Criação de Animais Domésticos/métodos , Animais , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/prevenção & controle , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/veterinária , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/transmissão , Masculino , Orthobunyavirus/genética , RNA Viral/genética , Sêmen/virologia , Sensibilidade e Especificidade
9.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445493

RESUMO

Classical swine fever (CSF) is a highly contagious disease caused by the classical swine fever virus (CSFV). The live attenuated C-strain vaccine is highly efficacious, initiating protection within several days of delivery. The vaccine strain is detected in the tonsil early after inoculation, yet little is known of the role that tonsillar immune cells might play in initiating protection. Comparing the C-strain vaccine with the pathogenic CSFV Alfort-187 strain, changes in the myeloid cell compartment of the tonsil were observed. CSFV infection led to the emergence of an additional CD163+CD14+ cell population, which showed the highest levels of Alfort-187 and C-strain infection. There was also an increase in both the frequency and activation status (as shown by increased MHC-II expression) of the tonsillar conventional dendritic cells 1 (cDC1) in pigs inoculated with the C-strain. Notably, the activation of cDC1 cells coincided in time with the induction of a local CSFV-specific IFN-γ+ CD8 T cell response in C-strain vaccinated pigs, but not in pigs that received Alfort-187. Moreover, the frequency of CSFV-specific IFN-γ+ CD8 T cells was inversely correlated to the viral load in the tonsils of individual animals. Accordingly, we hypothesise that the activation of cDC1 is key in initiating local CSFV-specific CD8 T cell responses which curtail early virus replication and dissemination.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Tonsila Palatina/imunologia , Vacinas Virais/administração & dosagem , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Peste Suína Clássica/imunologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/fisiologia , Células Dendríticas/metabolismo , Interferon gama/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Células Mieloides/metabolismo , Tonsila Palatina/citologia , Tonsila Palatina/virologia , Receptores de Superfície Celular/metabolismo , Suínos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Carga Viral , Vacinas Virais/imunologia
11.
PLoS Pathog ; 17(1): e1009247, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497419

RESUMO

Schmallenberg virus (SBV) is the cause of severe fetal malformations when immunologically naïve pregnant ruminants are infected. In those malformed fetuses, a "hot-spot"-region of high genetic variability within the N-terminal region of the viral envelope protein Gc has been observed previously, and this region co-localizes with a known key immunogenic domain. We studied a series of M-segments of those SBV variants from malformed fetuses with point mutations, insertions or large in-frame deletions of up to 612 nucleotides. Furthermore, a unique cell-culture isolate from a malformed fetus with large in-frame deletions within the M-segment was analyzed. Each Gc-protein with amino acid deletions within the "hot spot" of mutations failed to react with any neutralizing anti-SBV monoclonal antibodies or a domain specific antiserum. In addition, in vitro virus replication of the natural deletion variant could not be markedly reduced by neutralizing monoclonal antibodies or antisera from the field. The large-deletion variant of SBV that could be isolated in cell culture was highly attenuated with an impaired in vivo replication following the inoculation of sheep. In conclusion, the observed amino acid sequence mutations within the N-terminal main immunogenic domain of glycoprotein Gc result in an efficient immune evasion from neutralizing antibodies in the special environment of a developing fetus. These SBV-variants were never detected as circulating viruses, and therefore should be considered to be dead-end virus variants, which are not able to spread further. The observations described here may be transferred to other orthobunyaviruses, particularly those of the Simbu serogroup that have been shown to infect fetuses. Importantly, such mutant strains should not be included in attempts to trace the spatial-temporal evolution of orthobunyaviruses in molecular-epidemiolocal approaches during outbreak investigations.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Bunyaviridae/veterinária , Doenças dos Bovinos/virologia , Variação Genética , Orthobunyavirus/genética , Doenças dos Ovinos/virologia , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/imunologia , Infecções por Bunyaviridae/virologia , Bovinos , Feminino , Feto , Glicoproteínas/genética , Glicoproteínas/imunologia , Mutação , Orthobunyavirus/imunologia , Orthobunyavirus/fisiologia , RNA Viral/genética , Deleção de Sequência , Ovinos , Proteínas do Envelope Viral/imunologia , Replicação Viral
12.
Viruses ; 12(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036281

RESUMO

Bovine Pestiviruses A and B, formerly known as bovine viral diarrhoea viruses (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, responsible for significant economic losses. Bovine viral diarrhoea control programmes are in effect in several high-income countries but less so in low- and middle-income countries where bovine pestiviruses are not considered in disease control programmes. However, bovine pestiviruses are genetically and antigenically diverse, which affects the efficiency of the control programmes. The emergence of atypical ruminant pestiviruses (Pestivirus H or BVDV-3) from various parts of the world and the detection of Pestivirus D (border disease virus) in cattle highlights the challenge that pestiviruses continue to pose to control measures including the development of vaccines with improved cross-protective potential and enhanced diagnostics. This review examines the effect of bovine pestivirus diversity and emergence of atypical pestiviruses in disease control by vaccination and diagnosis.


Assuntos
Doenças dos Bovinos/prevenção & controle , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 2/imunologia , Infecções por Pestivirus/prevenção & controle , Vacinação/veterinária , Animais , Antígenos Virais/imunologia , Bovinos , Doenças dos Bovinos/diagnóstico , Proteção Cruzada/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Vírus da Diarreia Viral Bovina Tipo 2/isolamento & purificação , Infecções por Pestivirus/veterinária , Vacinas Virais/imunologia
13.
Sci Rep ; 10(1): 8951, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488046

RESUMO

African swine fever virus (ASFV) causes a lethal, haemorrhagic disease in domestic swine that threatens pig production across the globe. Unlike domestic pigs, warthogs, which are wildlife hosts of the virus, do not succumb to the lethal effects of infection. There are three amino acid differences between the sequence of the warthog and domestic pig RELA protein; a subunit of the NF-κB transcription factor that plays a key role in regulating the immune response to infections. Domestic pigs with all 3 or 2 of the amino acids from the warthog RELA orthologue have been generated by gene editing. To assess if these variations confer resilience to ASF we established an intranasal challenge model with a moderately virulent ASFV. No difference in clinical, virological or pathological parameters were observed in domestic pigs with the 2 amino acid substitution. Domestic pigs with all 3 amino acids found in warthog RELA were not resilient to ASF but a delay in onset of clinical signs and less viral DNA in blood samples and nasal secretions was observed in some animals. Inclusion of these and additional warthog genetic traits into domestic pigs may be one way to assist in combating the devastating impact of ASFV.


Assuntos
Febre Suína Africana/prevenção & controle , Ligases/genética , NF-kappa B/genética , Febre Suína Africana/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Animais Selvagens/genética , Ligases/metabolismo , NF-kappa B/metabolismo , Engenharia de Proteínas/métodos , Sus scrofa/genética , Suínos
14.
J Virol Methods ; 275: 113704, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518634

RESUMO

Applying palindromic nucleotide substitutions (PNS) method, variable loci of the internal ribosome entry site (IRES) secondary structure in the 5' untranslated region (UTR) of Border disease virus sequences were analysed allowing their allocation into ten IRES classes within the species. Sequence characteristics of Turkish and Chinese strains were highly divergent from other genogroups, indicating geographic segregation and micro-evolutive steps within the species. Observed heterogeneity in the BDV species has to be considered for potential implications on diagnostic tests, control and preventive measures.


Assuntos
Vírus da Doença da Fronteira/classificação , Vírus da Doença da Fronteira/genética , Genoma Viral , Sítios Internos de Entrada Ribossomal , Filogenia , Regiões 5' não Traduzidas/genética , Animais , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , RNA Viral/química
15.
Front Immunol ; 10: 1584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396205

RESUMO

Classical Swine Fever Virus (CSFV) is an ongoing threat to the pig industry due to the high transmission and mortality rates associated with infection. Live attenuated vaccines such as the CSFV C strain vaccine are capable of protecting against infection within 5 days of vaccination, but the molecular mechanisms through which this early protection is mediated have yet to be established. In this study, we compared the response of pigs vaccinated with the C strain to non-vaccinated pigs both challenged with a pathogenic strain of CSFV. Analysis of transcriptomic data from the tonsils of these animals during the early stages after vaccination and challenge reveals a set of regulated genes that appear throughout the analysis. Many of these are linked to the ISG15 antiviral pathway suggesting it may play a role in the rapid and early protection conferred by C strain vaccination.


Assuntos
Peste Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Transcriptoma/imunologia , Vacinas Virais/imunologia , Animais , Vírus da Febre Suína Clássica , Suínos , Vacinas Atenuadas/imunologia
16.
Transbound Emerg Dis ; 66(6): 2311-2317, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31267701

RESUMO

Equine infectious anaemia virus (EIAV) is a retrovirus with worldwide distribution which is notifiable to the OIE. Despite its importance to the equine industry, most information regarding its biology have been obtained using only two strains (EIAVWYO and EIAVLIA ) from the USA and China, respectively. Recently full genome sequences from Ireland, Italy and Japan have been published; however, this is still not representative of the number of EIAV outbreaks experienced globally each year. The limited availability of published sequences makes design of a universal EIAV PCR difficult, hence diagnosis is solely reliant on serology. Accordingly, it is important to further investigate the re-emerging cases in other areas of the world. Here, we provide information regarding the outbreaks of EIA in England in 2010 and 2012 including the molecular characterization of strains. Full genome was obtained for two symptomatic cases but could not be resolved for the asymptomatic cases. The two British genomes from 2010 (EIAVDEV ) and 2012 (EIAVCOR ) each represent a new phylogenetic group, each differing genetically from the other available full genome sequences by 21.1%-25.5%. That the majority of new EIAV full genome sequences to be published adds another phylogenetic group indicates that the surface of EIAV global diversity is just being scratched. These data highlight that further work is needed to fully understand EIAV genetic diversity, namely the full genome sequencing of EIAV cases from a variety of locations and time points. This would aid both the use of phylogenetics in parallel with horse tracing as the epidemiological tool of disease tracking and the design of a universally applicable molecular diagnostic method.


Assuntos
Variação Genética , Genoma Viral , Vírus da Anemia Infecciosa Equina/genética , Animais , Surtos de Doenças/veterinária , Inglaterra , Anemia Infecciosa Equina/epidemiologia , Cavalos , Filogenia
17.
J Gen Virol ; 100(9): 1315-1327, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31348000

RESUMO

Purpose. Bovine leukemia virus (BLV) infects cattle worldwide, imposing an economic impact on the dairy cattle industry. The purpose of this study was to evaluate the molecular epidemiology of BLV in Iran.Methodology. Blood samples taken from 280 cows aged over 2 years old from 13 provinces of Iran were used for leukocyte count and blocking ELISA. Genomic DNA was extracted from the peripheral blood leukocytes of BLV-infected samples and fetal lamb kidney cells to perform PCR of partial env, rex and tax genes and long-terminal-repeat region. The PCR products were sequenced, the phylogenetic tree of each gene was constructed, and nucleotide and amino acid sequence pair distances were calculated.Results. The frequency of BLV infection was 32.8 % among animals and was 80 % among provinces. In BLV seropositive animals, the rate of persistent lymphocytosis was 36.9 %. The constructed phylogenetic trees showed the presence of two BLV genotypes (1 and 4) in Iranian strains. As previous studies, our results showed that the env gene was more variable than previously thought, the Rex protein could withstand more amino acid changes compared to the Tax protein, and no significant differences were observed in average changes of the nucleotide of these genes between clinical stages.Conclusions. Our data indicates an increase in the frequency of this infection in Iran. This is the first study report of the presence of BLV genotype 4 in Iranian farms. These findings may have an important role in the control and prevention of BLV infection in Iran and other countries.


Assuntos
Leucose Enzoótica Bovina/virologia , Vírus da Leucemia Bovina/isolamento & purificação , Epidemiologia Molecular , Animais , Bovinos , Leucose Enzoótica Bovina/epidemiologia , Feminino , Genoma Viral , Genótipo , Irã (Geográfico)/epidemiologia , Vírus da Leucemia Bovina/genética , Filogenia
18.
Virology ; 527: 116-121, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30496912

RESUMO

Hepatitis E virus (HEV) infection is widespread in the global pig population. Although clinically inapparent in pigs, HEV infection is the cause of Hepatitis E in humans and transmission via the food chain has been established. Following a 2013 study that investigated prevalence of HEV infection in UK slaughter-age pigs samples indicating highest viral load were selected for further characterisation. High throughput sequencing was used to obtain the complete coding sequence from five samples. An in-frame insertion was observed within the HEV hypervariable region in two samples. To interrogate whether this mutation may be the cause of high-level viraemia and faecal shedding as observed in the sampled pigs virus isolation and culture was conducted. Based on viral growth kinetics there was no evidence that these insertions affected replication efficiency in vitro, suggesting as yet undetermined host factors may affect the course of infection and consequently the risk of foodborne transmission.


Assuntos
Vírus da Hepatite E/genética , Hepatite E/veterinária , Sus scrofa/virologia , Viremia/veterinária , Animais , Fezes/virologia , Microbiologia de Alimentos , Genoma Viral/genética , Hepatite E/epidemiologia , Hepatite E/virologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/crescimento & desenvolvimento , Mutagênese Insercional , Fases de Leitura Aberta , Filogenia , Prevalência , RNA Viral/genética , Análise de Sequência de RNA , Suínos , Reino Unido/epidemiologia , Viremia/virologia
19.
Front Immunol ; 9: 1800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158925

RESUMO

The palatine tonsil is the portal of entry for food and air and is continuously subjected to environmental challenges, including pathogens, which use the tonsil and pharynx as a primary site of replication. In pigs, this includes the viruses causing porcine respiratory and reproductive syndrome, and classical and African swine fever; diseases that have impacted the pig production industry globally. Despite the importance of tonsils in host defense, little is known regarding the phenotype of the myeloid cells resident in the porcine tonsil. Here, we have characterized five myeloid cell populations that align to orthologous populations defined in other mammalian species: a CD4+ plasmacytoid dendritic cell (DC) defined by expression of the conserved markers E2.2 and IRF-7, a conventional dendritic cell (cDC1) population expressing CADM1highCD172alow and high levels of XCR1 able to activate allogeneic CD4 and CD8 T cells; a cDC2 population of CADM1dim cells expressing FLT3, IRF4, and CSF1R with an ability to activate allogeneic CD4 T cells; CD163+ macrophages (MÏ´s) defined by high levels of endocytosis and responsiveness to LPS and finally a CD14+ population likely derived from the myelomonocytic lineage, which showed the highest levels of endocytosis, a capacity for activation of CD4+ memory T cells, combined with lower relative expression of FLT3. Increased knowledge regarding the phenotypic and functional properties of myeloid cells resident in porcine tonsil will enable these cells to be targeted for future vaccination strategies to current and emerging porcine viruses.


Assuntos
Células Mieloides/metabolismo , Tonsila Palatina/citologia , Fenótipo , Animais , Apresentação de Antígeno/imunologia , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunofenotipagem , Linfócitos/imunologia , Linfócitos/metabolismo , Suínos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
20.
Vaccine ; 36(30): 4494-4500, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29907483

RESUMO

Atypical ruminant pestiviruses are closely related to the two bovine viral diarrhoea virus (BVDV) species, BVDV-1 and BVDV-2. While there is evidence of cross-protective immune responses between BVDV-1 and BVDV-2, despite antigenic differences, there is little information on the antigenic cross-reactivity with atypical ruminant pestiviruses. The aim of this study was therefore to assess the specificity of antibody and T cell responses induced by experimental infection of calves with BVDV-1 strain Ho916, Th/04_KhonKaen (TKK), an Asiatic atypical ruminant pestivirus, or co-infection with both viruses. Homologous virus neutralization was observed in sera from both single virus infected and co-infected groups, while cross-neutralization was only observed in the TKK infected group. T cell IFN-γ responses to both viruses were observed in the TKK infected animals, whereas Ho916 infected calves responded better to homologous virus. Specifically, IFN-γ responses to viral non-structural protein, NS3, were observed in all infected groups while responses to viral glycoprotein, E2, were virus-specific. Broader antigen-specific cytokine responses were observed with similar trends between inoculation groups and virus species. The limited T cell and antibody immune reactivity of Ho916 inoculated animals to TKK suggests that animals vaccinated with current BVDV-1-based vaccines may not be protected against atypical ruminant pestiviruses.


Assuntos
Imunidade Adaptativa/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Pestivirus/imunologia , Ruminantes/virologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Células Cultivadas , Reações Cruzadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...